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a b s t r a c t

We describe early experiments in the adoption of the OptIPuter architecture to provide data-intensive

capabilities to several remote users of a large-scale, multi-year effort to organize and make publicly

available data describing a wide variety of marine microbial ecologies, their genomic content, and the

local environments in which they live—marine microbial metagenomics. Microbial genomes are millions

of base pairs in length, requiring both a global view of the genome and the ability to zoom into detail

interactively, enabled by the OptIPortal. We describe the design of a scientific data and compute server,

enhanced byOptIPuter technologies, and early examples of its use in support of high performance science

applications in this emerging scientific field.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A new frontier field which studies the metagenomics of

microbial ecologies [1] is emerging at the interface of genomics,

environmental sciences, and information technology. This new

field examines the interplay of hundreds to thousands of microbial

species present at a specific environmental location in space and

time. Each individual organism’s genome sequence is studied as a

tightly coupled part of an entire biological community. This means

that each individual sequence can now be considered from the

worldview of the ecological sciences: the composition of the rest

of the community, the environmental conditions in which it is

found, and its relationships with other species with which it is

found at other times and places. It also sets the stage for many new

breakthroughs to occur in basic science,medicine, alternate energy

sources, and environmental cleanup.

In this paper we will describe the use of the NSF-funded OptI-

Puter [2] technologies to provide high bandwidth data-intensive

capabilities to a multi-year effort to organize and make publicly

available data describing a wide variety of marine microbial ecolo-

gies, their genomic content, and the local environments in which
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they live. This project, funded over seven years by the Gordon and

Betty Moore Foundation (GBMF) [3], will develop an innovative

state-of-the-art Community Cyberinfrastructure for AdvancedMa-

rine Microbial Ecology Research and Analysis (CAMERA). The par-

ticipants include the California Institute for Telecommunications

and Information Technology (Calit2) [4], the J. Craig Venter Insti-

tute (JCVI) [5], the Scripps Institution of Oceanography’s Center for

Earth Observations and Applications (CEOA) [6], and the San Diego

Supercomputer Center (SDSC) [7].

2. CAMERA and marine microbial metagenomics

Carl Woese [8] and his collaborators have shown using 16S

RNA [9] phylogenies that all living things can be evolutionarily [10]

resolved into three ‘‘kingdoms’’; Bacteria, Archeae, and Eukarya.

While the macroscopic biological world of animals and plants

belong to the Eukarya, the vast majority of organisms on Earth

are single celled organisms. In fact, most of what we often think

of as evolution – namely, the evolution of multi-cellular life – is

but a small piece of life’s history. Single-celled life seems to have

been present on Earth for at least 3.5 billion years, whereas today’s

familiar multi-cellular life rapidly evolved after the Cambrian

Explosion of 0.5 billion years ago [11], and the evolutionary steps

that led to humans began only after a celestial impact removed

dinosaurs from the world just 0.065 billion years ago.

Thus, microorganisms on land and in the ocean play fundamen-

tal roles today in every ecosystem on Earth and hold the key to
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knowledge of the first three billion years of life’s evolution that

took place in the oceans of our planet. If we are to discover the

great majority of genes that record life’s evolutionary experiments

with a constantly changing environment, we must look to ocean

microbes.

Microorganisms play fundamental roles in every ecosystem

on Earth. As Norman Pace, one of the pioneers of microbial

evolution observed, ‘‘Life’s diversity is mainly microbial in

nature. Although the biosphere is absolutely dependent on the

activities ofmicroorganisms, our understanding of themakeup and

natural history of microbial ecosystems is, at best, rudimentary.

One reason for the paucity of information is that microbial

biologists traditionally have relied on laboratory cultures for

the detection and identification of microbes. Yet, more than

99% of environmental microbes are not cultured using standard

techniques. As a consequence, themakeup of the natural microbial

world remains largely unknown’’ [12]. The field of research known

as metagenomics (or environmental genomics) has recently

emerged largely as a means of circumventing the need to culture a

given microbe in order to study it.

As an example, in April 2004, a major breakthrough in the scale

of application of the techniques in metagenomics was published

by Craig Venter and his team at the J. Craig Venter Institute

in Rockville, Maryland in Science [13]. Whole-genome shotgun

sequencing [14], which had been developed to sequence the

human genome, was performed on samples taken from an entire

microbial ecological community in the Sargasso Sea off Bermuda.

Micron-scale pore filters were used to remove from the sample

most eukaryotes (larger than 3 microns) and the smaller dissolved

DNA and viral particles (smaller than 0.1 micron). The particular

region was chosen because it is nutrient-limited and therefore

was thought likely to have limited biological content. In spite

of that, the genomic analysis revealed at least 1800 genomic

species, including 148 previously unknown bacterial phylotypes.

Compared with known genes previously reported in the National

Institutes of Health’s GenBank [15], the water sample from this

single ‘‘eco-niche’’ in the ocean yielded an amazing 1.2 million

previously unknown genes.

Following up this research, the Venter Institute then conducted

the most comprehensive study of marine microbial biodiversity

ever carried out. The Sorcerer II Expedition [16] collected and

sequenced samples from around the world’s oceans, creating the

Global Ocean Sampling (GOS) project. Using the Sargasso Sea

experiment as a prototype, the Sorcerer II Expedition took samples

roughly every 200miles, withmore detailed sampling in sites such

as the Galapagos Islands and the coast of Australia. At each site, the

water samples were filtered and the specimens frozen and flown

to the Venter Institute. There robotic sequencers performed the

shotgun sequencing of the communities’ collective DNA, funded by

the GBMF.

The highly efficient use of shotgun sequencing of microbial

ecologies, as compared with the traditional approach of culturing

individual microbes in the laboratory, has produced a rapid

increase in the number of genes sequenced [17]. Besides the

Sargasso Sea and GOS studies, communities investigated have

come from soil, deep sea sediments, acid mines, and human feces.

Venter Institute has plans, funded in part by the Sloan Foundation,

to sequence the DNA from bacteria, viruses, fungi, and other

microbes in New York City air [18]. CAMERA is building a state-

of-the-art computational and collaborative data-analysis facility

to house all this metagenomics data, with the option of using

unprecedented high-performance OptIPuter access to the end-

user.

This transition from individual organism genomics to ecolog-

ical metagenomics is having a dramatic impact on biological re-

search today. The discovery of so many new genes gives us the

opportunity to consider innovative biological approaches to alter-

nate energy [19], pharmacology [20], environmental cleanup [21],

and even climate-change adaptation strategies [22]. Given the

scientific advances and economic benefits that the metagenomic

study of microbial ecologies can produce, it is not surprising that it

has taken off as a new branch of science.

3. The CAMERA OptIPuter data server and the campus Lambda-
Grid

The NSF-funded OptIPuter project is focused on establishing

‘‘end-to-end’’ dedicated light waves (1- or 10 Gbps wavelengths

on fibers termed ‘‘lambdas’’) from the end user’s laboratory, across

campus and wide-area networks (National Lambda Rail [23], In-

ternet2, and the Global Lambda Integrated Facility [24]) to re-

mote data repositories, compute resources, scientific instruments,

or colleagues, dramatically improving the flow of data to the

end-user.

In addition to providing web access to genomic data over

the shared Internet to over 2000 scientists from more than 50

countries, CAMERA was architected so that it could also enable

high end users to take advantage of OptIPuter technologies.

Within one month of the award, Calit2 had assembled a 64-

processor development and pre-production validation clusterwith

12 Terabytes of storage. On a longer time scale, Calit2 staff

members increased the size and upgraded the capabilities of

the Calit2 server room [25], and procured and installed a larger

production server. Both development and production clusters are

used heavily for different aspects of the project.

The current CAMERA production configuration revolves around

a 128-node (512 CPU core) IntelWoodcrest Cluster ( ∼5 Teraflops)

with 512 GB of aggregate memory. All nodes are interconnected

via 1 GbE and half those nodes are interconnected with 10 Gbit

Infiniband. All nodes, except for storage, run Linux CentOS 4

and is managed using SDSC Rocks [26]. Eight Sun Microsystems

‘‘Thumpers’’ (24 TB raw storage servers) run Sun’s ZFS file system

on a Solaris OS and are each connected at 10 GbE, providing nearly

200 Terabytes of storage dedicated to the production CAMERA

server (see Fig. 1). Storage is arranged in a replica pairs. Using ZFS

snapshots and physical replication means that several logical and

physical copies of data are always available. A collection of Postgres

Database servers, cluster management, grid login, and web servers

make up the balance.

The CAMERA complex is embedded into the UCSD OptIPuter

which has dedicated optical links connecting several major

laboratories on campus. A companion NSF award, Quartzite [27]

(which added optical switching to packet switching in this

infrastructure), previews what campuses’ infrastructure needs

to evolve to: immense bandwidth, optical circuits on demand,

and reconfigurable end-point systems. A production CAMERA

switch router, a Force10 E1200, connects all CAMERA nodes

and has 10 Gbit external connections to UCSD campus optical

networking and to the remote OptIPuter fabric. The UCSD optical

infrastructure was designed so that other campuses could clone

it, thus establishing similar ‘‘on-ramps’’, as is now happening at

Calit2’s other campus at UC Irvine.Work is underway to get similar

optical infrastructures onmany other campuses around the world.

As a practical example of what this OptIPuter campus-scale

implementation enables, we consider CAMERA computing chal-

lenges. While CAMERA data sets are physically small (e.g. fitting

on a commercial drive), it is actually bandwidth to data that dom-

inates the calculation. User’s entering CAMERA through the online

BLAST submission run a parallel program to calculate results. The

degree of parallelism depends on what is actually being searched,

but a typical search consumes about 100 CPUs for a single query
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Fig. 1. The CAMERA OptIPuter server complex at Calit2@UCSD.

(or about 25% of our production server). For single sequence align-

ments, the entire submission, parallel search, and return results to

user is completed in ∼10 s.

However, sometimes our production complex does not provide

enough horsepower to complete a particular analysis. Using our

OptIPuter dedicated optical network on campus for connectivity,

we can acquire other computing resources on an as-needed basis.

For example, in preparation for a new release of software a

large number pre-computed BLAST results are needed for the

JCVI-authored fragment recruitment viewer (FRV). To support,

the FRV calculations, we temporarily dedicated an additional 200

processors of a remote cluster at SDSC. By connecting at 10 GbE to

the CAMERA database and storage, these remote nodes appeared

local and became an extension to the CAMERA complex. In this

configuration, FRV calculations ran on the SDSC cluster for ∼1

week (about 4 CPU-years of calculation).

Should this SDSC remote cluster, which is part of the

OptIPuter experimental complex, prove to be insufficient, there

is enough network bandwidth to extend to the larger resources

in Teragrid [28] in a nearly identical manner. Making the

CAMERA resource directly available at high-bandwidth eliminates

complexity for the applications and management — essentially

CAMERA extends into resources for these occasional large-scale

calculations. This looks like ‘‘cloud’’ computing, but in reality is

not nearly as complex on the software side. Our very capable

(and reconfigurable) network allows us to easily connect to other

physical resources and make them appear (temporarily) as if they

exist within the same machine room.

In summary, the core CAMERA computing and storage complex

is built from commodity components and software so that existing

parallel applications, web servers/services front-ends, database

servers, large flat-file storage, and grid-based authentication can

all functionwithout requiring significant changes. However,where

CAMERA differs from the majority of cluster complexes is that

it is also ‘‘OptIPuter enabled’’ by 10 Gbit Ethernet dedicated

connections to external labs through NLR. This enables the

subclass of CAMERA remote researchers who desire much higher

performance to treat the CAMERA data and computing complex

as a ‘‘peripheral’’ to their lab without being handicapped by

insufficient connectivity. For authenticated labs and users, they

can have read-only 10 Gbps lambda direct access to CAMERA

database servers and flat-file data farms. We will discuss two such

implementations in Section 5.

4. The software architecture of the CAMERA OptIPuter data
server

We use the Rocks cluster toolkit to define all Linux nodes in

CAMERA for scalability, reliability and reproducibility. There are

currently eight different node configurations, called ‘‘appliances’’

in Rocks, which include Compute, front-end, database, portal/web-

server, authentication, registration, application servers, and mon-

itoring consoles. The complexity of CAMERA required changes in

the Rocks toolkit to simplify the management of ‘‘staging’’ and

‘‘production’’ versions. When preparing a new release of software,

a single administrator builds a smaller-scale, but fully-functional

set of servers for testing – when validated, only a small number

of variables are changed in a single MySQL database to define the

production environment. At this point, the production servers are

rebuilt in exactly the same manner as our validation/staging com-

plex. Our mechanisms and methods allow for production environ-

ments to be built programmatically and dramatically reduces the

variability of human administration.

CAMERA data is held in SQL databases to provide a well-

defined internal data model. However, most bioinformatics codes

operate on standard flat-file ‘‘databases’’. NCBI-BLAST (which is the

core BLAST algorithm used in CAMERA) requires its own binary

formatted files from text-based FASTA files. Today, when a user

requests a BLAST through the portal, wemake the BLAST execution

parallel (e.g. up to 135-way parallelism when running against

all ORFs) and segmented binary files must be available. When

designing CAMERA, our first design included replication of these

binary data files on all local disks. However, using Sun Fire X4500

storage servers connected at 10 Gbit, holding these binary files on

a traditional network file server, provides excellent performance

and eliminates another layer of data management. In addition we

take advantage of ZFS’ built-in snapshot capability to replicate

data among storage servers for data integrity. The large available

storage (∼200 TB raw) allows us to keep several versions of data

as well as output from users so that they can easily retrieve past

results.

As CAMERA data expands in size, performance expectations

may require more than the 1 GB/s (10 Gbit/s) delivered by a single

X4500 file server. Should it be necessary, data can be replicated

across X4500s or striped using a parallel file system to achieve the

necessary aggregate performance. One possible solution could be

to use the internal drives of compute nodes and carefully manage

where data is replicated. However, our current deployment of
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storage servers contains almost 400 disk drives or about 3X the

number of drives in the entire cluster. The high-level of disk

integration in the X4500s allows us to use a much simpler design

and achieve excellent performance.
Our overall systems goal is one of complete reproducibility of

the data products and the computing complex itself. To this end,we

integrate a large number of externally authored tools and external

data andmake both available to our users. Through Rocks, we have

an excellent mechanism for reproducing the infrastructure itself

so that users have a transparent view into the system that they are

using to analyze data. This reduces uncertainty in the process.With

the large number of metagenomic datasets that CAMERA is now

planning to house, we are developing a similar methodology for

ingesting raw data from external projects (‘‘providers’’) and then

providing this data in a variety of formats as needed by various

tools.
CAMERA data has two-parts — voluminous sequence data

(and assemblies) and environmental metadata. Both types of data

are of interest to scientists, but the environmental data (e.g.

geo-location, salinity, temperature, chlorophyll, time-of-day, and

more) is essentially unstructuredwith few, if any, metafields being

common to every single sequence. For example, chlorophyll counts

make sense in marine genomic datasets, but have less relevance to

air or intestinal genomic sets. Enabling scientists to sort through,

select, and operate against subsets of sequence data based on

meta-data attributes is at the core of what CAMERA is trying to

accomplish.
We will ‘‘master’’ all data in a traditional SQL database and

then produce various formats of the master data as a combination

of database reports and well-defined programs. For example, raw

sequence and metadata will be held in a database and then a

FASTA format report will be written as output from the database.

A segmented database for parallel NCBI BLAST is then created from

these files. The data, nomatter the format, can be traced back to the

database master copy. For this workflow, any database will work

(e.g., MySQL, Postrgres, Oracle, IBM DB2, and others).
A dedicated NLR gigabit/s path was researched, designed, and

implemented between Calit2 and JCVI. This has been essential for

the efficient transfer of applications software and large data sets.

When UCSD receives a release candidate of software from JCVI (or

other providers), it often has data associated with it. We set out

to make ∼200 GB long-haul transfers commonplace (and more

efficient than the traditional FedEx). Using our dedicated link and

UDT from Grossman Lab at University of Illinois, Chicago, we are

easily able to sustain about 35 MB/s for disk-to-disk transfer, but

disks are 2500 miles (∼4200 kM) apart! We compared to using

the identical software over amore congested route and saw speeds

average about 5MB/s. Total data transfer consumes about 100min

over NLR (vs. 700 min or 11.5 h over a congested public network).

Additional work on usingmore optimal disks systems (both source

and sink) would result in further time reductions when using a

dedicated circuit.

5. Twoworking examples of remotemetagenomics OptIPortals

It was recognized early in the OptIPuter project that users of

1- or 10 Gbps dedicated optical networks needed to use their

laboratory Linux clusters as the end-points to terminate the optical

circuits (as a telephone terminates the telephonic circuit). So the

OptIPuter project developed a standard recipe for how to modify

a Linux cluster to make it an ‘‘OptIPortal’’, OptIPuter end-point

customized for scalable computing, storage, or visualization [29].
Combined with 10 Gbps campus optical fiber (discussed above)

‘‘on-ramps’’, connecting the end-user OptIPortal Linux cluster

laboratory analysis facility to the NLR and then to CAMERA, the

user will see up to a 10–100 fold increase in bandwidth accessing

our CAMERA facility compared to access over the traditional

shared Internet using a web browser. The OptIPuter project is

working with a few CAMERA early adopters who have deployed

OptIPortals in their labs and are customizing them to the needs

of microbial metagenomics researchers (see Fig. 2). To establish

full OptIPuter end-to-end cyberinfrastructure to their laboratories

required detailed studies of the networking connectivity between

Calit2 and these sites, as well as across their campuses. In this

section, we will illustrate how in two such laboratories the display

walls were set up and used for metagenomics, linking to the

Calit2 CAMERA server. The two labs are the Forest Rohwer Lab

at San Diego State University (regional-scale OptIPuter) and E.

Virginia Armburst’s Lab at the University of Washington, Seattle,

WA (national-scale OptIPuter).

In the Summer of 2007, the Rohwer Lab installed a 9600×3600

pixel (∼35 Mpixel) OptIPortal tiled wall driven by [30] 8 DELL PCs

running ROCKS. The cluster is being used to analyze metagenomic

datasets generated by the Rohwer group and to develop new

bioinformatic metagenomic data analysis tools, which are slated

for deployment on the CAMERA compute server. In essence,

through it’s adoption of the OptIPortal architecture, the Rohwer

group has established a local CAMERA cluster development

environment that allows newly developed software to be tested

and modified before integration into the CAMERA central server.

The visualization wall is being used to develop tools for co-

displayingmetabolic pathways predicted frommetagenomes onto

a global map. These metagenomic datasets represent nine major

biomes, 100+ samples, and >17 million individual sequences.

The initial goal of this project is to visualize co-occurrences of

metabolisms and geochemical data from coral reefs around the

world. The geochemistry data is mostly derived from remote

sensing platforms (>100 Terabytes) and is stored at the SDSU

visualization center and other datacenters. Soon, these datasets

will be supplementedwithmore than 200 hours of high-definition

video from coral reefs. When complete, a user will be able to

‘‘swim’’ through coral reefs and see the pertinentmetagenomic and

geochemical data. The advantage of the display wall is the ability

to see the details of these extremely large datasets in context of the

‘‘larger’’ picture.

The Rohwer lab members range from undergraduates to post-

docs and mathematicians to biologists. Together, they envision

using the visualization wall in the same way as a communal white

board, with all of the advantages of real time mashups of the

terabyte datasets. Future plans invoke the use of the the OptIPortal,

tied over a 1 or 10 Gbps optical link to the CAMERA server at Calit2,

to examine 300+ sample metagenomic datasets from all over the

world. The high I/O of the CAMERA servers coupled to the large

pixel count in the OptIPortal will enable the Rohwer Lab to analyze

this data in ways not possible on desktop visualization systems.

A single GigE optical fiber connection was established between

Calit2 and SDSU in June 2007 over CENIC fiber. The connection

is distributed to the Frost CSL 102B visualization and Rohwer

GMCS 429A ACE laboratories. This dedicated GigE between SDSU

and Calit2, makes it possible to perform distributed processing of

satellite imagery, and metagenomic data.

The OptIPuter dedicated fiber linkage connecting SDSU to Calit2

also provides a pathway to spectrally ‘‘contextualize’’ the biologic

study by being able to bring in and rapidly process MODIS [31]

imagery from the NASAGoddard group, which is also connected by

OptIPuter to Calit2. The NASA MODIS instruments fly in formation

on the Aqua and Terra satellites and acquire an image of most of

the world’s oceans twice a day with spectral window that can be

very effectively tuned to image plankton and microbial life. Even

though the pixel size of MODIS imagery is 250 m at the best, it

effectively images life in the oceans, as well as numerous chemical

components, because of the concentrations in the water. Spin

patterns, upwelling patterns, and changes from severe weather

events are all directly imageable. Linking to groundmeasurements

of the DNA, even by going back to the historic imagery of the day
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Fig. 2. Use of tiled display wall OptIPortal to interactively view a 5.6 Mb microbial genome (a soil bacterium acidobacteria bacterium Ellin345).

when past samples were collected, is providing a calibration of the

ocean so that imagery can more effectively predict the biologic

content, diversity, and transport within the ocean.

The biological oceanography research team of E. Virginia Arm-

brust at the University of Washington uses molecular approaches

and combines lab-based and field-based studies to address basic

questions about the function ofmarine ecosystems. Phytoplankton

are themain focus of research in theArmbrust lab. These organisms

are responsible for about 40% of the total amount of photosynthe-

sis that occurs on our planet. They play a critical role in the global

carbon cycle and ultimately in global climate. Because much of the

organic carbon generated by phytoplankton is used by bacteria, the

Lab also studies bacterial/phytoplankton interactions.

The Armbrust research lab was in the process of designing a

lab in the new UW Benjamin D. Hall Interdisciplinary Research

building during 2007,when the opportunity to install anOptIPortal

arose. Development of a special visualization room with glassed

walls on two sides was a central feature of the lab design. A

physical wall separates the 12,800 by 4800 pixel (∼60Mpixel) tiled

wall from the server room in which the OptIPortal cluster of nine

computers is located. The group then worked with the campus to

install fiber from the Pacific Northwest Gigapop to the Ben Hall

Interdisciplinary Research Building, enabling a 10GigE link from

Pacific Wave over CaveWave to Calit2’s CAMERA server [32].

The first day the wall was available, the group carried out

two experiments which immediately provided them with new

scientific insights. First, they put up single nucleotide and sequence

coverage maps of the 24 chromosomes of the marine diatom

Thalassiosira pseudonanna (see Fig. 3), which have been studied

extensively in the lab. They declared ‘‘for the first time we could

see the the fine detail of the genomic map in the context of all

24 chromosomes which allowed us to begin to see patterns in the

distributions of genomic features.’’

At SC07, held in Reno Nevada during November 2007, Larry

Smarr stood in the University of Washington’s ResearchChan-

nel’s booth talking with Professor Armbrust in Seattle. High def-

inition teleconferencing was accomplished using ResearchChan-

nel’s iHDTVTM,which streamsuncompressed 1080i high-definition

video, and is now being integrated into SAGE. As seen in Fig. 4, Pro-

fessor Armbrust was using her new OptIPortal to compare simula-

tions of summer and winter circulation patterns in Puget Sound.

This is a first step in comparing the environmental metadata that

influence the distribution patterns of different specimens of di-

atoms her lab has analyzed genomically. The next step is to su-

perimpose the genomic information on the environmental data,

something that will be possible to see only because of the high res-

olution provided by the OptIPortal.

6. The future–connecting the CAMERA OptIPlanet collabora-
tory

In 2008, wewill complete the addition of twomore laboratories

across the US using OptIPortals, located at UC-Davis (Jonathan

Eisen) and University of Michigan (Tom Finholt). Additional

OptIPortals are being deployed internationally using local funds

in Canada, Mexico, Korea, Japan, Taiwan, Australia, and the
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Fig. 3. UWashington’s E. Virginia Armbrust displays the 24 chromosomes of the marine diatom Thallasiosira Pseudonanna.

Fig. 4. Smarr conversing with Professor Armbrust using uncompressed iHDTV integrated with University of Washington CAMERA OptIPortal.

Fig. 5. Use of the StarCAVE OptIPortal to interactively visualize the proteins of the marine microbe Thermotoga maritima.
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Netherlands to access the CAMERA server complex. As these

international OptIPortals are linked up with HD flows over

GLIF in 2008, an OptIPlanet Collaboratory will emerge. This

lambda-enabled cyberinfrastructure will be devoted both to

fundamental biological research, as well as to applications in

emerging areas, such as studying the health of coral reefs

under increasing environmental stress or optimizing genetically

engineered microbial bio-fuel generators.

This lambda-connected collaboratorywill allow the researchers

to ‘‘feel’’ as if the two research centers, separated by thousands of

miles,were next door to eachother! Itwill be quite straightforward

to build on this Calit2 prototype to create the cyberinfrastructure

linking the collaborating science teams at any of the CAMERA user

sites that require this higher performance capability.

Furthermore, we will expand our experiments in how to use

3D OptIPortals, such as the StarCAVE and Varrier [33] to explore

the proteomics of microbial genomes. Here Calit2’s affiliation with

the Joint Center for Structural Genomics [34] has enabled us to

carry out early evaluations of the use of the StarCAVE as a ‘‘3D

web browser’’ (see Fig. 5) for the first 100% complete coverage of

a metabolic network, which was derived using the roughly 1200

proteins that have structural coverage (over 60% of the 1859 genes)

from the genome of the high temperature microbe Thermotoga

maritima. Wewill continue this research in 2008 and explore using

Covise to move 3D visualization capabilities to our remote walls at

SDSU and UW.

In conclusion, these are early days in the adoption of OptIPuter

technologies by scientific disciplines, but indications are that

the great enhancement of bandwidth and pixel real estate the

OptIPutermakes possible are quite useful to scientists studying the

enormous complexity of living creatures in their environments.
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